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Introduction

• Random variable is a variable whose values are random and
depend on a probability distribution.
• E.g., normal, exponential, Poisson, etc.

• Random variate is a particular outcome (i.e. observed
sample, realization) of a random variable.
• E.g., 5 random variates (outcomes) from a N (0, 1) random

variable: 0.5377, 1.8339,−2.2588, 0.8622, 0.3188.

• When simulating a system, we often need to generate random
variates (e.g., interarrival time, service time) from all kinds of
distributions (e.g., exponential distribution, arbitrary empirical
distribution).
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Introduction

• In practice:
• Most simulation softwares have build-in functions to generate

random variates from common distributions.
• Most programming languages have implemented the common

routines of random variate generation in the libraries.

• It is nevertheless worthwhile to understand how random
variate generation occurs.
• In case when build-in functions or libraries are unavailable.
• To better understand the randomness in stochastic simulation.
• Be alert to some inadequate random variate generator.

• To produce a sequence of random variates from a given
distribution:

1 Start with random variates from Uniform[0, 1] (called random
numbers).

2 All random variates with given distribution are “transformed”
from random numbers.
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Random Number Generation I Definition

• Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].
• If U ∼ Uniform[0, 1], then E[U ] = 1

2 , Var(U) = 1
12 , and its

pdf is f(u) =

{
1, 0 ≤ u ≤ 1,

0, otherwise.

• 10 random numbers: 0.2760, 0.6797, 0.6551, 0.1626, 0.1190,
0.4984, 0.9597, 0.3404, 0.5853, 0.2238.

• Statistical Properties
• Uniformity: Each value on [0, 1] has equal likelihood.
• Independence: No correlation between successive numbers.
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Random Number Generation I Definition

• Uniformity
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Figure: Uniformity vs Nonuniformity (from ZHANG Xiaowei )

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 5 / 36

✔ ✗

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Random Number Generation I Definition

• Independence
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Figure: Independence vs Dependence (from ZHANG Xiaowei )
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Random Number Generation I Pseudo-Random Numbers

• A computer can NOT generate true randomness! It can only
give us pseudo-random (伪随机) numbers.

• “Pseudo” means false
• Generating random numbers by a known method removes true

randomness.
• The set of pseudo-random numbers can be repeated.

• Goal: To produce a sequence of numbers in [0, 1] that
imitates the ideal properties of random numbers.
• Statistical properties are the most important.
• True randomness is not the first priority.
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Random Number Generation I Pseudo-Random Numbers

• Properties of a good random number generator (RNG):
1 Pass statistical tests.
2 Solid theoretical support.
3 Fast.
4 Sufficiently long cycle (period).
5 Portable to different computers.
6 Replicable.

• Techniques for RNG:
• Linear Congruential Generator (LCG)
• Combined LCG
• Multiple Recursive Generator (MRG)
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Random Number Generation I Linear Congruential Generator

• Linear Congruential Generator (LCG, 线性同余发生器) is a
simple and early development of RNG.

1 Produce a sequence of integers x1, x2, . . . between 0 and
m− 1 by

xi+1 = (axi + c) mod m, i = 0, 1, 2, . . . .

• The initial value x0 is called the seed (种子), a is multiplier
(乘子), c is increment (增量), and m is modulus (模数).

2 Transform xi’s to values between 0 and 1 by

ui =
xi
m
, i = 0, 1, 2, . . . .

• Possible values of ui: {0, 1
m , . . . ,

m−1
m }. (May not cover all!)

• The selection of the values for a, c, m, and x0 drastically
affects the statistical properties and the cycle length.
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Random Number Generation I Linear Congruential Generator

• Example: Use LCG with x0 = 27, a = 17, c = 43, and
m = 100.

x0 = 27

x1 = (17× 27 + 43) mod 100 = 502 mod 100 = 2

u1 = 2/100 = 0.02

x2 = (17× 2 + 43) mod 100 = 77 mod 100 = 77

u2 = 77/100 = 0.77

x3 = (17× 77 + 43) mod 100 = 1352 mod 100 = 52

u3 = 52/100 = 0.52

x4 = (17× 52 + 43) mod 100 = 927 mod 100 = 27

u4 = 27/100 = 0.27

The cycle length is only 4!

• Try https://xiaoweiz.shinyapps.io/randNumGen for different parameters.
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Random Number Generation I Linear Congruential Generator

• An actual use of LCG ( Lewis et al. 1969 ): a = 75, c = 0,
m = 231 − 1 = 2, 147, 483, 647 (a prime number).
• It adopts ui = xi

m+1 .
• It passes many of the standard statistical tests.
• Cycle length ≈ 231 − 2 ≈ 2× 109 (well over 2 billion).

• Note: By letting modulus m be a power of 2 (or close), the
modulo operation can be conducted efficiently, since most
digital computers use a binary representation of numbers.

• As computing power has increased, LCG is not adequate
nowadays; more sophisticated RNGs are used in practice.
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Random Number Generation I More Sophisticated RNGs

• Combined LCG: Combine J (≥ 2) LCG (with c = 0).

• For 32-bit computers, L’Ecuyer (1988) suggests combining
J = 2 generators with a1 = 40, 014, m1 = 2, 147, 483, 563,
a2 = 40, 692, and m2 = 2, 147, 483, 399.

1 Select seed x1,0 in the range [1,m1 − 1] for the first generator, and
seed x2,0 in the range [1,m2 − 1] for the second. Set j = 0.

2 Calculate x1,j+1 = a1x1,j mod m1,

x2,j+1 = a2x2,j mod m2.

3 Let xj+1 = (x1,j+1 − x2,j+1) mod (m1 − 1).
(Remark: mod uses floored division, i.e., y mod m = y −mb y

m
c.)

4 Return

uj+1 =

{xj+1

m1
, if xj+1 > 0,

m1−1
m1

, if xj+1 = 0.

5 Set j = j + 1 and go to Step 2.

It has cycle length (m1 − 1)(m2 − 1)/2 ≈ 2× 1018.
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Random Number Generation I More Sophisticated RNGs

• Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:

xi = (a1xi−1 + a2xi−2 + · · ·+ akxi−K) mod m.

• A specific instance that has been widely implemented is
MRG32k3a† (L’Ecuyer 1999), which is a combined MRG with
J = 2 and K = 3.

• It has cycle length ≈ 3× 1057, which is enormous.
• If you could generate 2 billion (109) pseudo-random numbers

per second, then it would take longer than the age of the
universe to exhaust the period of MRG32k3a!

†
MRG32k3a or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.
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Random Number Generation I Tests for Random Numbers

• Tests based on generated sequences of numbers.
• Frequency Test for uniformity (discussed in next lecture)

– Kolmogorov–Smirnov test (柯尔莫哥洛夫– 斯米尔诺夫检验)
– chi-square test (χ2 test, 卡方检验)

• Autocorrelation Test for independence.

• There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (谱检验).

• Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.

• Be careful when the RNG at hand is not explicitly known or
documented!
• Even RNGs that have been used for years in popular

commercial softwares (e.g., Excel, Visual Basic), have been
found to be inadequate ( L’Ecuyer 2001 ).
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Random Variate Generation

• Assumption: RNG is available, i.e. we have a sequence of
random numbers (Uniform[0, 1]).

• Goal: Produce random variates from a given probability
distribution (e.g. exponential, Poisson, etc.).

• Widely-used techniques†

• Inverse-transform technique (generic)
• Acceptance-rejection technique (generic)
• Other ad-hoc methods for some specific distributions

†
Methods introduced in this lecture are exact; there are also approximation methods such as MCMC.
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Random Variate Generation I Inverse-Transform Technique

• Let F (x) be the cumulative distribution function (cdf) of X,
i.e., F (x) = P(X ≤ x).

x

F(x)

x2 x4x1

x

F(x)1

0

1

0 x3

Figure: Continuous Random Variable Figure: Discrete Random Variable

• Procedures

1 Generate (as needed) random numbers (on vertical axis).
2 Map inversely to points on horizontal axis, which are the

desired random variates from F (x).
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Random Variate Generation I Inverse-Transform Technique

• The formal definition of inverse function is
F−1(y) := min{x : F (x) ≥ y}, 0 ≤ y ≤ 1.

• If U ∼ Uniform[0, 1], then F−1(U) has the same distribution
as X, i.e.,

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

X

U

x

F(x)

x2 X x4x1

U

x

F(x)1

0

1

0

Figure: Continuous Random Variable Figure: Discrete Random Variable

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 17 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Random Variate Generation I Inverse-Transform Technique

• The inverse-transform technique is useful when the cdf is so
simple that its inverse function can be analytically solved or
easily computed.

• It can be used to sample from various continuous distributions
• uniform
• exponential
• triangular
• Weibull
• Cauchy
• Pareto

• It can be used to sample from all (in principle) discrete
distributions, e.g.,
• discrete uniform
• geometric
• arbitrary empirical distribution
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Random Variate Generation I Uniform Distribution

• Goal: Generate random variates from X ∼ Uniform[a, b].

• Intuition: Since X = a+ (b− a)U , we just need to:
1 Generate random number ui;
2 Output xi = a+ (b− a)ui as the required random variates.

• For X ∼ Uniform[a, b], the pdf and cdf are

f(x) =

{
1
b−a , a ≤ x ≤ b,
0, otherwise,

F (x) =


0, x < a,
x−a
b−a , a ≤ x ≤ b,
1, b < x.

• Solve the inverse function of F (x),

F−1(y) = a+ (b− a)y, 0 ≤ y ≤ 1.

• So, F−1(U) = a+ (b− a)U has the same distribution as X.
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Random Variate Generation I Exponential Distribution

• Goal: Generate random variates from X ∼ Exp(λ).

• For X ∼ Exp(λ), the pdf and cdf are

f(x) =

{
λe−λx, x ≥ 0,

0, x < 0,
F (x) =

{
1− e−λx, x ≥ 0,

0, x < 0.

• Solve the inverse function of F (x),

F−1(y) = − 1

λ
ln(1− y), 0 ≤ y ≤ 1.

• So, F−1(U) = − 1
λ ln(1− U) has the same distribution as X.

• Remark: 1− U ∼ Uniform[0, 1] ⇒ − 1
λ ln(U) is sufficient.

• Numerical test for Exp(1) in Excel.
1 Generate 200 random numbers.
2 Obtain 200 random variates via the inverse function.
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Random Variate Generation I Exponential Distribution
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Figure:
(a) Empirical histogram of 200
generated uniform random
numbers;
(b) Theoretical density of
Uniform[0, 1];

(c) Empirical histogram of 200
generated exponential variates
(λ = 1);
(d) Theoretical density of
Exp(1).

(from Banks et al. (2010) )
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Random Variate Generation I Discrete Distribution

• Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.

• The pmf and cdf are

p(x) =


0.5, x = 0,

0.3, x = 1,

0.2, x = 2,

F (x) =


0, x < 0,

0.5, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,

1, 2 ≤ x.

• Solve the inverse function. (Recall F−1(y) := min{x : F (x) ≥ y}.)

x

F(x)

0.5

2 310

1

 
 0.8

F−1(y) =


0, 0 ≤ y ≤ 0.5,

1, 0.5 < y ≤ 0.8,

2, 0.8 < y ≤ 1.

Try it in Excel.
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Random Variate Generation I Acceptance-Rejection Technique

• Why do we need another method when the inverse-transform
technique is already generic?
• The cdf of a desired distribution may not have an analytical

form.
• The inverse cdf may not exist in closed form and may be

challenging to evaluate, e.g., beta, gamma, normal, etc.
• Although you can solve the inverse transform via numerical

methods anyway, the efficiency may be low.
• E.g., consider a pdf f(x) = 6x(1− x) for 0 ≤ x ≤ 1, then the

cdf is F (x) = 3x2 − 2x3. Computing inverse cdf requires to
solve 3x2 − 2x3 = y for given y.

• Acceptance-rejection technique is also useful for generating a
non-stationary Poisson process (more details later).
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Random Variate Generation I A Näıve Example

• Goal: Generate random variates from X ∼ Uniform[1/4, 1]
using acceptance-rejection technique.

1 Generate a random number u (from U ∼ Uniform[0, 1]).
2 If u ≥ 1/4, accept u, output u as the desired random variate;

if u < 1/4, reject u, and return to Step 1.
3 If another Uniform[1/4, 1] random variate is needed, repeat

the procedure from Step 1; stop otherwise.

• Important Observation 1: To produce one random variate
using A-R technique, one may need to generate multiple
random numbers.
• Whereas there exists a one-to-one mapping for the

inverse-transform method.
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Random Variate Generation I A Näıve Example

• Important Observation 2: The accepted values of U are
conditioned values.
• U itself does not have the desired distribution.
• U conditioned on the event {U ≥ 1/4} does!

• For 1/4 ≤ x ≤ 1,

P{U ≤ x|U ≥ 1/4} =
P{U ≤ x and U ≥ 1/4}

P{U ≥ 1/4}
=
x− 1/4

3/4
,

which is exactly the desired cdf of X ∼ Uniform[1/4, 1].
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Random Variate Generation I Bounded Support

• Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M .

Acceptance-rejection method

AR for densities with a bounded support

I The target density f (x) has support [a, b] and is upper bounded by M

reject

f (x)
M

I Simulate (Y ,U ) ∼ Unif{(y, u) : a ≤ y ≤ b, 0 ≤ u ≤ M}
I Accept the pair if 0 < U < f (Y ) and let X be the accepted value of Y

13 / 26

a b

M

0

accept

Figure: Bounded Support (original image from ZHANG Xiaowei )

1 Generate random variate pairs (y1, z1), (y2, z2), . . ., from
Uniform{(y, z) : a ≤ y ≤ b, 0 ≤ z ≤M}.
• yi from Y ∼ Uniform[a, b], zi from Z ∼ Uniform[0,M ]

2 Accept the pair if zi < f(yi) and output yi as random variate
from X with density f(x).
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Random Variate Generation I Bounded Support

• Y conditioned on the event {Z < f(Y )} has the same
distribution as X, i.e., having density f(x).

• (Y,Z) ∼ Uniform{(y, z) : a ≤ y ≤ b, 0 ≤ z ≤M}.

Proof.

P{Y ≤ x|Z < f(Y )} =
P{Y ≤ x, Z < f(Y )}

P{Z < f(Y )}

=

∫ x
a

∫ f(y)

0
fY,Z(y, z)dzdy∫ b

a

∫ f(y)

0
fY,Z(y, z)dzdy

Note: fY,Z(y, z) =
1

(b− a)M

=

∫ x
a

∫ f(y)

0
1

(b−a)M
dzdy∫ b

a

∫ f(y)

0
1

(b−a)M
dzdy

=

∫ x
a

∫ f(y)

0
dzdy∫ b

a

∫ f(y)

0
dzdy

=

∫ x
a
f(y)dy∫ b

a
f(y)dy

=
P{X ≤ x}

1
= P{X ≤ x}. �

• The acceptance rate is P{Z < f(Y )} = 1
(b−a)M .
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Random Variate Generation I Beta from Uniform

• Goal: Generate random variates from Beta(α, β), where the

density is f(x) = xα−1(1−x)β−1

B(α,β) , x ∈ [0, 1].

pd
f

• If α > 1 and β > 1, then f(x) is maximized at x = α−1
α+β−2

and the maximum is M = (α−1)α−1(β−1)β−1

(α+β−2)α+β−2B(α,β)
.

• The acceptance rate is 1
(b−a)M = 1

(1−0)M = 1
M .
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Random Variate Generation I Unbounded Support

• Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

Acceptance-rejection method

reject

f (x)
Mg(x)

I Following Fundamental Theorem of Simulation, if we can simulate Y ∼ g, then
we can simulate U |Y = y ∼ Unif[0,Mg(y)] and then (Y ,U ) is uniform on L

I Then, we only accept the pair if U < f (Y )

17 / 26

accept

Figure: Unbounded Support (original image from ZHANG Xiaowei )

1 Generate random variate pairs (y1, z1), (y2, z2), . . ., from
Uniform{(y, z) : y ∈ support of g(·), 0 ≤ z ≤Mg(y)}.
• yi from Y ∼ g(·), zi from Z ∼ Uniform[0,Mg(yi)] (why?)

2 Accept the pair if zi < f(yi) and output yi as random variate
from X with density f(x).
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Random Variate Generation I Unbounded Support

• Y conditioned on the event {Z < f(Y )} has the same
distribution as X, i.e., having density f(x).
• Let Θ denote {(y, z) : y ∈ support of g(·), 0 ≤ z ≤Mg(y)}.
• (Y,Z) ∼ Uniform Θ.

Proof.

P{Y ≤ x|Z < f(Y )} =
P{Y ≤ x, Z < f(Y )}

P{Z < f(Y )}

=

∫ x
−∞

∫ f(y)

0
fY,Z(y, z)dzdy∫∞

−∞

∫ f(y)

0
fY,Z(y, z)dzdy

Note: fY,Z(y, z) =
1

Θ area

=

∫ x
−∞

∫ f(y)

0
1

Θ area
dzdy∫∞

−∞

∫ f(y)

0
1

Θ area
dzdy

=

∫ x
−∞

∫ f(y)

0
dzdy∫∞

−∞

∫ f(y)

0
dzdy

=

∫ x
−∞ f(y)dy∫∞
−∞ f(y)dy

=
P{X ≤ x}

1
= P{X ≤ x}. �

• The acceptance rate is
P{Z < f(Y )} = 1

Θ area = 1∫∞
−∞Mg(y)dy

= 1
M

∫∞
−∞ g(y)dy

= 1
M .
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Random Variate Generation I Normal from Cauchy

• Goal: Generate random variates from N (0, 1), where the

density is f(x) = 1√
2π
e−

x2

2 , x ∈ (−∞,∞).

• Use Cauchy(0) density as instrumental density, which is
g(x) = 1

π(1+x2)
, x ∈ (−∞,∞).

Normal

Cauchy

pd
f

• It is easy to see that f(x)
g(x) =

√
π
2 (1 + x2)e−

x2

2 is maximized at

x = ±1 and the maximum is
√

2π
e , which is the required M .

• The acceptance rate is 1
M =

√
e

2π ≈ 0.6577.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 31 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Random Variate Generation I Other Ad-Hoc Methods

• Univariate normal: A normal RV with mean µ and s.d. σ
has pdf

φ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ (−∞,∞).

• If µ = 0 and σ = 1, then it is a standard normal RV.

• If Z ∼ N (0, 1), then µ+ σZ ∼ N (µ, σ2).

• Generate N (0, 1) random variate

Method 1 Acceptance-rejection technique (from Cauchy).
Method 2 Box–Muller method.
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Random Variate Generation I Other Ad-Hoc Methods

• Box–Muller method
1 Generate u1 and u2 independently from Uniform[0, 1].

2 Let z1 =
√
−2 lnu1 cos(2πu2) and z2 =

√
−2 lnu1 sin(2πu2).

• z1 and z2 are random variates from N (0, 1) (independent).

• Intuition:
• For two independent N (0, 1) RVs
Z1 and Z2,

Z2
1 + Z2

2 ∼ χ2
2.

• X ∼ Exp(1/2) ⇔ X ∼ χ2
2.

• −2 lnu1 is a random variate from
Exp(1/2) (and thus χ2

2).
• The angle is distributed uniformly

around the circle.

e-½

-2 -1 0 1 2
u1 (o), z1 (+)

2

1

0

-1

-2

u2
 (o

), 
z2

 (+
)

Figure: Box–Muller Method Visualisation
( image by Cmglee / CC BY 3.0 )

Interactive Graph: Wikimedia Backup
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Random Variate Generation I Other Ad-Hoc Methods

• Multivariate normal: Univariate normal Zi ∼ N (µi, σ
2
i ),

i = 1, . . . , d, with Σij := Cov(Zi, Zj), form a random vector
Z = (Z1, . . . , Zd)

ᵀ ∼ N (µ,Σ), and it has joint pdf

φ(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)

ᵀ
Σ−1(x− µ)

}
,

x ∈ Rd, where |Σ| is the determinant of Σ.

• Σ = (Σij) is a symmetric and positive semidefinite matrix.

• If µi = 0 and σi = 1 for all i, and Σij = 0 for i 6= j (pairwise
independence), then Z ∼ N (0, I).

• If Z ∼ N (0, I), and Σ = AA
ᵀ

(Cholesky decomposition),
then µ+AZ ∼ N (µ,Σ).

• There are many other relationships among various probability
distributions.
• See, for example, Leemis & McQueston (2008) and the

interactive graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
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Random Variate Generation I Generating Poisson Process

• Poisson process with rate λ: Interarrival time distribution is
exponential with rate λ (or mean 1/λ), and

N(t+ h)−N(t) ∼ Poisson(λh). (same as N(h))

• To generate Poisson process with rate λ, one only need to
generate iid Exp(λ) random variates.
• si, the arrival time of the ith arrival, satisfies

si = si−1 − (1/λ) ln(ui), i = 1, 2, . . . .

• Nonhomogeneous Poisson process with rate (intensity)
function λ(t):

N(t+ h)−N(t) ∼ Poisson(m(t+ h)−m(t)),

where m(t) =
∫ t

0 λ(s)ds.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 35 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Random Variate Generation I Generating Poisson Process

• To generate nonhomogeneous Poisson process with rate
function λ(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

• Idea behind thinning:
• Generate a stationary Poisson arrival process at the fastest rate
λ∗ = maxt λ(t).

• But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

• Algorithm:
1 Set t = 0 and i = 1.

2 Generate x from Exp(λ∗), and let t← t+ x (this is the arrival
time of the stationary Poisson process with rate λ∗).

3 Generate random number u (from Uniform[0, 1]).
If u ≤ λ(t)/λ∗, then si = t and i← i+ 1.

4 Go to Step 2.
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