MG26018 Simulation Modeling and Analysis

仿真建模与分析
Lecture 3：Random Variate Generation

SHEN Haihui 沈海辉
Sino－US Global Logistics Institute
Shanghai Jiao Tong University

ヘ shenhaihui．github．io／teaching／mg26018
－shenhaihui＠sjtu．edu．cn

Fall 2019

董浩云航运与物流研究院 CY TUNG Institute of Maritime and Logistics
中美物流研究院 Sino－US Global Logistics Institute

Contents

(1) Introduction

(2) Random Number Generation

- Definition
- Pseudo-Random Numbers
- Linear Congruential Generator
- More Sophisticated RNGs
- Tests for Random Numbers
(3) Random Variate Generation
- Inverse-Transform Technique
- Acceptance-Rejection Technique
- Other Ad-Hoc Methods
- Generating Poisson Process

Introduction

- Random variable is a variable whose values are random and depend on a probability distribution.
- E.g., normal, exponential, Poisson, etc.
- Random variate is a particular outcome (i.e. observed sample, realization) of a random variable.
- E.g., 5 random variates (outcomes) from a $\mathcal{N}(0,1)$ random variable: $0.5377,1.8339,-2.2588,0.8622,0.3188$.
- When simulating a system, we often need to generate random variates (e.g., interarrival time, service time) from all kinds of distributions (e.g., exponential distribution, arbitrary empirical distribution).

Introduction

- In practice:
- Most simulation softwares have build-in functions to generate random variates from common distributions.
- Most programming languages have implemented the common routines of random variate generation in the libraries.
- It is nevertheless worthwhile to understand how random variate generation occurs.
- In case when build-in functions or libraries are unavailable.
- To better understand the randomness in stochastic simulation.
- Be alert to some inadequate random variate generator.
- To produce a sequence of random variates from a given distribution:
(1) Start with random variates from Uniform $[0,1]$ (called random numbers).
(2) All random variates with given distribution are "transformed" from random numbers.
- Random numbers are a sequence of independent random observations from uniform distribution on $[0,1]$.
- If $U \sim \operatorname{Uniform}[0,1]$, then $\mathbb{E}[U]=\frac{1}{2}, \operatorname{Var}(U)=\frac{1}{12}$, and its

$$
\text { pdf is } f(u)= \begin{cases}1, & 0 \leq u \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- 10 random numbers: $0.2760,0.6797,0.6551,0.1626,0.1190$, $0.4984,0.9597,0.3404,0.5853,0.2238$.
- Statistical Properties
- Uniformity: Each value on $[0,1]$ has equal likelihood.
- Independence: No correlation between successive numbers.
- Uniformity

Figure: Uniformity vs Nonuniformity (from ZHANG Xiaowei)

- Independence

Figure: Independence vs Dependence (from ZHANG Xiaowei)
－A computer can NOT generate true randomness！It can only give us pseudo－random（伪随机）numbers．
－＂Pseudo＂means false
－Generating random numbers by a known method removes true randomness．
－The set of pseudo－random numbers can be repeated．
－Goal：To produce a sequence of numbers in $[0,1]$ that imitates the ideal properties of random numbers．
－Statistical properties are the most important．
－True randomness is not the first priority．

- Properties of a good random number generator (RNG):
(1) Pass statistical tests.
(2) Solid theoretical support.
(3) Fast.

4 Sufficiently long cycle (period).
(5) Portable to different computers.
(6) Replicable.

- Techniques for RNG:
- Linear Congruential Generator (LCG)
- Combined LCG
- Multiple Recursive Generator (MRG)
－Linear Congruential Generator（LCG，线性同余发生器）is a simple and early development of RNG．
（1）Produce a sequence of integers x_{1}, x_{2}, \ldots between 0 and $m-1$ by

$$
x_{i+1}=\left(a x_{i}+c\right) \bmod m, \quad i=0,1,2, \ldots
$$

－The initial value x_{0} is called the seed（种子），a is multiplier （乘子），c is increment（增量），and m is modulus（模数）．
（2）Transform x_{i}＇s to values between 0 and 1 by

$$
u_{i}=\frac{x_{i}}{m}, \quad i=0,1,2, \ldots
$$

－Possible values of $u_{i}:\left\{0, \frac{1}{m}, \ldots, \frac{m-1}{m}\right\}$ ．（May not cover all！）
－The selection of the values for a, c, m ，and x_{0} drastically affects the statistical properties and the cycle length．

- Example: Use LCG with $x_{0}=27, a=17, c=43$, and $m=100$.

$$
\begin{aligned}
& x_{0}=27 \\
& x_{1}=(17 \times 27+43) \bmod 100=502 \bmod 100=2 \\
& u_{1}=2 / 100=0.02 \\
& x_{2}=(17 \times 2+43) \bmod 100=77 \bmod 100=77 \\
& u_{2}=77 / 100=0.77 \\
& x_{3}=(17 \times 77+43) \bmod 100=1352 \bmod 100=52 \\
& u_{3}=52 / 100=0.52 \\
& x_{4}=(17 \times 52+43) \bmod 100=927 \bmod 100=27 \\
& u_{4}=27 / 100=0.27
\end{aligned}
$$

The cycle length is only 4 !

- Try https://xiaoweiz.shinyapps.io/randNumGen for different parameters.
- An actual use of LCG (Lewis et al. 1969): $a=7^{5}, c=0$, $m=2^{31}-1=2,147,483,647$ (a prime number).
- It adopts $u_{i}=\frac{x_{i}}{m+1}$.
- It passes many of the standard statistical tests.
- Cycle length $\approx 2^{31}-2 \approx 2 \times 10^{9}$ (well over 2 billion).
- Note: By letting modulus m be a power of 2 (or close), the modulo operation can be conducted efficiently, since most digital computers use a binary representation of numbers.
- As computing power has increased, LCG is not adequate nowadays; more sophisticated RNGs are used in practice.
- Combined LCG: Combine $J(\geq 2)$ LCG (with $c=0)$.
- For 32-bit computers, L'Ecuyer (1988) suggests combining $J=2$ generators with $a_{1}=40,014, m_{1}=2,147,483,563$, $a_{2}=40,692$, and $m_{2}=2,147,483,399$.
(1) Select seed $x_{1,0}$ in the range [$1, m_{1}-1$] for the first generator, and seed $x_{2,0}$ in the range [$1, m_{2}-1$] for the second. Set $j=0$.
(2) Calculate

$$
\begin{aligned}
& x_{1, j+1}=a_{1} x_{1, j} \bmod m_{1} \\
& x_{2, j+1}=a_{2} x_{2, j} \bmod m_{2}
\end{aligned}
$$

(3) Let $x_{j+1}=\left(x_{1, j+1}-x_{2, j+1}\right) \bmod \left(m_{1}-1\right)$.
(Remark: \bmod uses floored division, i.e., $y \bmod m=y-m\left\lfloor\frac{y}{m}\right\rfloor$.)
(4) Return

$$
u_{j+1}= \begin{cases}\frac{x_{j+1}}{m_{1}}, & \text { if } x_{j+1}>0 \\ \frac{m_{1}-1}{m_{1}}, & \text { if } x_{j+1}=0\end{cases}
$$

(5) Set $j=j+1$ and go to Step 2 .

It has cycle length $\left(m_{1}-1\right)\left(m_{2}-1\right) / 2 \approx 2 \times 10^{18}$.

- Multiple Recursive Generator (MRG): Extends LCG by using a higher-order recursion:

$$
x_{i}=\left(a_{1} x_{i-1}+a_{2} x_{i-2}+\cdots+a_{k} x_{i-K}\right) \bmod m .
$$

- A specific instance that has been widely implemented is MRG32k3a ${ }^{\dagger}$ (L'Ecuyer 1999), which is a combined MRG with $J=2$ and $K=3$.
- It has cycle length $\approx 3 \times 10^{57}$, which is enormous.
- If you could generate 2 billion (10^{9}) pseudo-random numbers per second, then it would take longer than the age of the universe to exhaust the period of MRG32k3a!

[^0]－Tests based on generated sequences of numbers．
－Frequency Test for uniformity（discussed in next lecture）

- Kolmogorov－Smirnov test（柯尔莫哥洛夫－斯米尔诺夫检验）
- chi－square test（ χ^{2} test，卡方检验）
－Autocorrelation Test for independence．
－There are also some theoretical tests without actually generating any numbers，e．g．，spectral test（谱检验）．
－Fortunately，the well－known RNGs which are widely used in simulation softwares and languages have been extensively tested and validated．
－Be careful when the RNG at hand is not explicitly known or documented！
－Even RNGs that have been used for years in popular commercial softwares（e．g．，Excel，Visual Basic），have been found to be inadequate（L＇Ecuyer 2001）．

Random Variate Generation

- Assumption: RNG is available, i.e. we have a sequence of random numbers (Uniform $[0,1]$).
- Goal: Produce random variates from a given probability distribution (e.g. exponential, Poisson, etc.).
- Widely-used techniques ${ }^{\dagger}$
- Inverse-transform technique (generic)
- Acceptance-rejection technique (generic)
- Other ad-hoc methods for some specific distributions

[^1]
Random Variate Generation

- Let $F(x)$ be the cumulative distribution function (cdf) of X, i.e., $F(x)=\mathbb{P}(X \leq x)$.

Figure: Continuous Random Variable

Figure: Discrete Random Variable

- Procedures
(1) Generate (as needed) random numbers (on vertical axis).
(2) Map inversely to points on horizontal axis, which are the desired random variates from $F(x)$.

Random Variate Generation

- The formal definition of inverse function is

$$
F^{-1}(y):=\min \{x: F(x) \geq y\}, \quad 0 \leq y \leq 1
$$

- If $U \sim \operatorname{Uniform}[0,1]$, then $F^{-1}(U)$ has the same distribution as X, i.e.,

$$
\mathbb{P}\left(F^{-1}(U) \leq x\right)=\mathbb{P}(U \leq F(x))=F(x)
$$

Figure: Continuous Random Variable

Figure: Discrete Random Variable

- The inverse-transform technique is useful when the cdf is so simple that its inverse function can be analytically solved or easily computed.
- It can be used to sample from various continuous distributions
- uniform
- exponential
- triangular
- Weibull
- Cauchy
- Pareto
- It can be used to sample from all (in principle) discrete distributions, e.g.,
- discrete uniform
- geometric
- arbitrary empirical distribution
- Goal: Generate random variates from $X \sim$ Uniform $[a, b]$.
- Intuition: Since $X=a+(b-a) U$, we just need to:
(1) Generate random number u_{i};
(2) Output $x_{i}=a+(b-a) u_{i}$ as the required random variates.
- For $X \sim$ Uniform $[a, b]$, the pdf and cdf are

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{b-a}, & a \leq x \leq b, \\
0, & \text { otherwise }
\end{array} \quad F(x)= \begin{cases}0, & x<a \\
\frac{x-a}{b-a}, & a \leq x \leq b \\
1, & b<x\end{cases}\right.
$$

- Solve the inverse function of $F(x)$,

$$
F^{-1}(y)=a+(b-a) y, \quad 0 \leq y \leq 1
$$

- So, $F^{-1}(U)=a+(b-a) U$ has the same distribution as X.
- Goal: Generate random variates from $X \sim \operatorname{Exp}(\lambda)$.
- For $X \sim \operatorname{Exp}(\lambda)$, the pdf and cdf are

$$
f(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x}, & x \geq 0, \\
0, & x<0,
\end{array} \quad F(x)= \begin{cases}1-e^{-\lambda x}, & x \geq 0 \\
0, & x<0\end{cases}\right.
$$

- Solve the inverse function of $F(x)$,

$$
F^{-1}(y)=-\frac{1}{\lambda} \ln (1-y), \quad 0 \leq y \leq 1
$$

- So, $F^{-1}(U)=-\frac{1}{\lambda} \ln (1-U)$ has the same distribution as X.
- Remark: $1-U \sim$ Uniform $[0,1] \Rightarrow-\frac{1}{\lambda} \ln (U)$ is sufficient.
- Numerical test for $\operatorname{Exp}(1)$ in Excel.
(1) Generate 200 random numbers.
(2) Obtain 200 random variates via the inverse function.

Random Variate Generation

Exponential Distribution

Figure:
(a) Empirical histogram of 200 generated uniform random numbers;
(b) Theoretical density of Uniform $[0,1]$;
(c) Empirical histogram of 200 generated exponential variates ($\lambda=1$);
(d) Theoretical density of $\operatorname{Exp}(1)$.
(from Banks et al. (2010))

- Consider a discrete random variable X taking values $0,1,2$ with probability $0.5,0.3$ and 0.2 .
- The pmf and cdf are

$$
p(x)=\left\{\begin{array}{ll}
0.5, & x=0, \\
0.3, & x=1, \\
0.2, & x=2,
\end{array} \quad F(x)= \begin{cases}0, & x<0 \\
0.5, & 0 \leq x<1 \\
0.8, & 1 \leq x<2 \\
1, & 2 \leq x\end{cases}\right.
$$

- Solve the inverse function. (Recall $F^{-1}(y):=\min \{x: F(x) \geq y\}$.)

$$
\begin{gathered}
F^{-1}(y)= \begin{cases}0, & 0 \leq y \leq 0.5, \\
1, & 0.5<y \leq 0.8, \\
2, & 0.8<y \leq 1 .\end{cases} \\
\text { Try it in Excel. }
\end{gathered}
$$

- Why do we need another method when the inverse-transform technique is already generic?
- The cdf of a desired distribution may not have an analytical form.
- The inverse cdf may not exist in closed form and may be challenging to evaluate, e.g., beta, gamma, normal, etc.
- Although you can solve the inverse transform via numerical methods anyway, the efficiency may be low.
- E.g., consider a pdf $f(x)=6 x(1-x)$ for $0 \leq x \leq 1$, then the cdf is $F(x)=3 x^{2}-2 x^{3}$. Computing inverse cdf requires to solve $3 x^{2}-2 x^{3}=y$ for given y.
- Acceptance-rejection technique is also useful for generating a non-stationary Poisson process (more details later).
- Goal: Generate random variates from $X \sim \operatorname{Uniform}[1 / 4,1]$ using acceptance-rejection technique.
(1) Generate a random number u (from $U \sim$ Uniform $[0,1]$).
(2) If $u \geq 1 / 4$, accept u, output u as the desired random variate; if $u<1 / 4$, reject u, and return to Step 1 .
(3) If another Uniform $[1 / 4,1]$ random variate is needed, repeat the procedure from Step 1; stop otherwise.
- Important Observation 1: To produce one random variate using $A-R$ technique, one may need to generate multiple random numbers.
- Whereas there exists a one-to-one mapping for the inverse-transform method.

Random Variate Generation

- Important Observation 2: The accepted values of U are conditioned values.
- U itself does not have the desired distribution.
- U conditioned on the event $\{U \geq 1 / 4\}$ does!
- For $1 / 4 \leq x \leq 1$,

$$
\mathbb{P}\{U \leq x \mid U \geq 1 / 4\}=\frac{\mathbb{P}\{U \leq x \text { and } U \geq 1 / 4\}}{\mathbb{P}\{U \geq 1 / 4\}}=\frac{x-1 / 4}{3 / 4}
$$

which is exactly the desired cdf of $X \sim \operatorname{Uniform}[1 / 4,1]$.

Random Variate Generation

- Suppose we want to generate random variates from X, whose density $f(x)$ has support $[a, b]$ and is upper bounded by M.

Figure: Bounded Support (original image from ZHANG Xiaowei)
(1) Generate random variate pairs $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right), \ldots$, from Uniform $\{(y, z): a \leq y \leq b, 0 \leq z \leq M\}$.

- y_{i} from $Y \sim \operatorname{Uniform}[a, b], z_{i}$ from $Z \sim \operatorname{Uniform}[0, M]$
(2) Accept the pair if $z_{i}<f\left(y_{i}\right)$ and output y_{i} as random variate from X with density $f(x)$.
- Y conditioned on the event $\{Z<f(Y)\}$ has the same distribution as X, i.e., having density $f(x)$.
- $(Y, Z) \sim \operatorname{Uniform}\{(y, z): a \leq y \leq b, 0 \leq z \leq M\}$.

Proof.

$$
\begin{aligned}
\mathbb{P}\{Y \leq x \mid Z<f(Y)\} & =\frac{\mathbb{P}\{Y \leq x, Z<f(Y)\}}{\mathbb{P}\{Z<f(Y)\}} \\
& =\frac{\int_{a}^{x} \int_{0}^{f(y)} f_{Y, Z}(y, z) \mathrm{d} z \mathrm{~d} y}{\int_{a}^{b} \int_{0}^{f(y)} f_{Y, Z}(y, z) \mathrm{d} z \mathrm{~d} y} \quad \text { Note: } f_{Y, Z}(y, z)=\frac{1}{(b-a) M} \\
& =\frac{\int_{a}^{x} \int_{0}^{f(y)} \frac{1}{(b-a) M} \mathrm{~d} z \mathrm{~d} y}{\int_{a}^{b} \int_{0}^{f(y)} \frac{1}{(b-a) M} \mathrm{~d} z \mathrm{~d} y}=\frac{\int_{a}^{x} \int_{0}^{f(y)} \mathrm{d} z \mathrm{~d} y}{\int_{a}^{b} \int_{0}^{f(y)} \mathrm{d} z \mathrm{~d} y} \\
& =\frac{\int_{a}^{x} f(y) \mathrm{d} y}{\int_{a}^{b} f(y) \mathrm{d} y}=\frac{\mathbb{P}\{X \leq x\}}{1}=\mathbb{P}\{X \leq x\} .
\end{aligned}
$$

- The acceptance rate is $\mathbb{P}\{Z<f(Y)\}=\frac{1}{(b-a) M}$.

Random Variate Generation

- Goal: Generate random variates from $\operatorname{Beta}(\alpha, \beta)$, where the density is $f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, x \in[0,1]$.

- If $\alpha>1$ and $\beta>1$, then $f(x)$ is maximized at $x=\frac{\alpha-1}{\alpha+\beta-2}$ and the maximum is $M=\frac{(\alpha-1)^{\alpha-1}(\beta-1)^{\beta-1}}{(\alpha+\beta-2)^{\alpha+\beta-2} B(\alpha, \beta)}$.
- The acceptance rate is $\frac{1}{(b-a) M}=\frac{1}{(1-0) M}=\frac{1}{M}$.
- Generate random variates from X, whose density $f(x)$ is upper bounded by $M g(x)$, where $g(x)$ is instrumental density.

Figure: Unbounded Support (origimal image from ZHANG Xiaowei)
(1) Generate random variate pairs $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right), \ldots$, from Uniform $\{(y, z): y \in$ support of $g(\cdot), 0 \leq z \leq M g(y)\}$.

- y_{i} from $Y \sim g(\cdot), z_{i}$ from $Z \sim \operatorname{Uniform}\left[0, M g\left(y_{i}\right)\right]$ (why?)
(2) Accept the pair if $z_{i}<f\left(y_{i}\right)$ and output y_{i} as random variate from X with density $f(x)$.
- Y conditioned on the event $\{Z<f(Y)\}$ has the same distribution as X, i.e., having density $f(x)$.
- Let Θ denote $\{(y, z): y \in \operatorname{support}$ of $g(\cdot), 0 \leq z \leq M g(y)\}$.
- $(Y, Z) \sim$ Uniform Θ.

Proof.
$\mathbb{P}\{Y \leq x \mid Z<f(Y)\}=\frac{\mathbb{P}\{Y \leq x, Z<f(Y)\}}{\mathbb{P}\{Z<f(Y)\}}$

$$
\begin{aligned}
& =\frac{\int_{-\infty}^{x} \int_{0}^{f(y)} f_{Y, Z}(y, z) \mathrm{d} z \mathrm{~d} y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} f_{Y, Z}(y, z) \mathrm{d} z \mathrm{~d} y} \text { Note: } f_{Y, Z}(y, z)=\frac{1}{\Theta \text { area }} \\
& =\frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \frac{1}{\Theta \text { area }} \mathrm{d} z \mathrm{~d} y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \frac{1}{\Theta \text { area }} \mathrm{d} z \mathrm{~d} y}=\frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \mathrm{d} z \mathrm{~d} y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \mathrm{d} z \mathrm{~d} y} \\
& =\frac{\int_{-\infty}^{x} f(y) \mathrm{d} y}{\int_{-\infty}^{\infty} f(y) \mathrm{d} y}=\frac{\mathbb{P}\{X \leq x\}}{1}=\mathbb{P}\{X \leq x\} .
\end{aligned}
$$

- The acceptance rate is

$$
\mathbb{P}\{Z<f(Y)\}=\frac{1}{\Theta \text { area }}=\frac{1}{\int_{-\infty}^{\infty} M g(y) \mathrm{d} y}=\frac{1}{M \int_{-\infty}^{\infty} g(y) \mathrm{d} y}=\frac{1}{M} .
$$

Random Variate Generation

- Goal: Generate random variates from $\mathcal{N}(0,1)$, where the density is $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, x \in(-\infty, \infty)$.
- Use Cauchy(0) density as instrumental density, which is $g(x)=\frac{1}{\pi\left(1+x^{2}\right)}, x \in(-\infty, \infty)$.

- It is easy to see that $\frac{f(x)}{g(x)}=\sqrt{\frac{\pi}{2}}\left(1+x^{2}\right) e^{-\frac{x^{2}}{2}}$ is maximized at $x= \pm 1$ and the maximum is $\sqrt{\frac{2 \pi}{e}}$, which is the required M.
- The acceptance rate is $\frac{1}{M}=\sqrt{\frac{e}{2 \pi}} \approx 0.6577$.

Random Variate Generation

- Univariate normal: A normal RV with mean μ and s.d. σ has pdf

$$
\phi(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in(-\infty, \infty)
$$

- If $\mu=0$ and $\sigma=1$, then it is a standard normal RV.
- If $Z \sim \mathcal{N}(0,1)$, then $\mu+\sigma Z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
- Generate $\mathcal{N}(0,1)$ random variate

Method 1 Acceptance-rejection technique (from Cauchy).
Method 2 Box-Muller method.

Random Variate Generation

- Box-Muller method
(1) Generate u_{1} and u_{2} independently from Uniform $[0,1]$.
(2) Let $z_{1}=\sqrt{-2 \ln u_{1}} \cos \left(2 \pi u_{2}\right)$ and $z_{2}=\sqrt{-2 \ln u_{1}} \sin \left(2 \pi u_{2}\right)$.
- z_{1} and z_{2} are random variates from $\mathcal{N}(0,1)$ (independent).
- Intuition:
- For two independent $\mathcal{N}(0,1) \mathrm{RV}$ s Z_{1} and Z_{2},

$$
Z_{1}^{2}+Z_{2}^{2} \sim \chi_{2}^{2}
$$

- $X \sim \operatorname{Exp}(1 / 2) \Leftrightarrow X \sim \chi_{2}^{2}$.
- $-2 \ln u_{1}$ is a random variate from $\operatorname{Exp}(1 / 2)$ (and thus χ_{2}^{2}).
- The angle is distributed uniformly around the circle.

Figure: Box-Muller Method Visualisation (image by Cmglee / CC BY 3.0)
Interactive Graph: Wikimedia Backup

Random Variate Generation

- Multivariate normal: Univariate normal $Z_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$, $i=1, \ldots, d$, with $\Sigma_{i j}:=\operatorname{Cov}\left(Z_{i}, Z_{j}\right)$, form a random vector $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{d}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and it has joint pdf

$$
\phi(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

$\boldsymbol{x} \in \mathbb{R}^{d}$, where $|\boldsymbol{\Sigma}|$ is the determinant of $\boldsymbol{\Sigma}$.

- $\boldsymbol{\Sigma}=\left(\Sigma_{i j}\right)$ is a symmetric and positive semidefinite matrix.
- If $\mu_{i}=0$ and $\sigma_{i}=1$ for all i, and $\Sigma_{i j}=0$ for $i \neq j$ (pairwise independence), then $\boldsymbol{Z} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$.
- If $\boldsymbol{Z} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$, and $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\top}$ (Cholesky decomposition), then $\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{Z} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- There are many other relationships among various probability distributions.
- See, for example, Leemis \& McQueston (2008) and the interactive graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
- Poisson process with rate λ : Interarrival time distribution is exponential with rate λ (or mean $1 / \lambda$), and

$$
N(t+h)-N(t) \sim \operatorname{Poisson}(\lambda h) . \quad(\text { same as } N(h))
$$

- To generate Poisson process with rate λ, one only need to generate iid $\operatorname{Exp}(\lambda)$ random variates.
- s_{i}, the arrival time of the i th arrival, satisfies

$$
s_{i}=s_{i-1}-(1 / \lambda) \ln \left(u_{i}\right), i=1,2, \ldots
$$

- Nonhomogeneous Poisson process with rate (intensity) function $\lambda(t)$:

$$
N(t+h)-N(t) \sim \operatorname{Poisson}(m(t+h)-m(t))
$$

where $m(t)=\int_{0}^{t} \lambda(s) \mathrm{d} s$.

- To generate nonhomogeneous Poisson process with rate function $\lambda(t)$, one can use the acceptance-rejection method (which is also called thinning in this context).
- Idea behind thinning:
- Generate a stationary Poisson arrival process at the fastest rate $\lambda^{*}=\max _{t} \lambda(t)$.
- But "accept" only a portion of arrivals, thinning out just enough to get the desired time-varying rate.
- Algorithm:
(1) Set $t=0$ and $i=1$.
(2) Generate x from $\operatorname{Exp}\left(\lambda^{*}\right)$, and let $t \leftarrow t+x$ (this is the arrival time of the stationary Poisson process with rate λ^{*}).
(3) Generate random number u (from Uniform $[0,1]$). If $u \leq \lambda(t) / \lambda^{*}$, then $s_{i}=t$ and $i \leftarrow i+1$.
(4) Go to Step 2 .

[^0]: ${ }^{\dagger}$ MRG32k3a or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.

[^1]: ${ }^{\dagger}$ Methods introduced in this lecture are exact; there are also approximation methods such as MCMC.

