
MG26018 Simulation Modeling and Analysis
仿真建模与分析

Lecture 3: Random Variate Generation

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute
Shanghai Jiao Tong University

� shenhaihui.github.io/teaching/mg26018

R shenhaihui@sjtu.edu.cn

Fall 2019

 董浩云航运与物流研究院
 CY TUNG Institute of Maritime and Logistics

中美物流研究院
 Sino-US Global Logistics Institute

blue

 董浩云航运与物流研究院
 CY TUNG Institute of Maritime and Logistics

中美物流研究院
 Sino-US Global Logistics Institute

blue

 董浩云航运与物流研究院
 CY TUNG Institute of Maritime and Logistics

中美物流研究院
 Sino-US Global Logistics Institute

blue

https://shenhaihui.github.io/teaching/mg26018/
https://www.sjtu.edu.cn/
http://www.sugli.sjtu.edu.cn/
https://creativecommons.org/licenses/by-sa/4.0/

Contents

1 Introduction

2 Random Number Generation
I Definition
I Pseudo-Random Numbers
I Linear Congruential Generator
I More Sophisticated RNGs
I Tests for Random Numbers

3 Random Variate Generation
I Inverse-Transform Technique
I Acceptance-Rejection Technique
I Other Ad-Hoc Methods
I Generating Poisson Process

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 1 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

• Random variable is a variable whose values are random and
depend on a probability distribution.
• E.g., normal, exponential, Poisson, etc.

• Random variate is a particular outcome (i.e. observed
sample, realization) of a random variable.
• E.g., 5 random variates (outcomes) from a N (0, 1) random

variable: 0.5377, 1.8339,−2.2588, 0.8622, 0.3188.

• When simulating a system, we often need to generate random
variates (e.g., interarrival time, service time) from all kinds of
distributions (e.g., exponential distribution, arbitrary empirical
distribution).

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 2 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

• In practice:
• Most simulation softwares have build-in functions to generate

random variates from common distributions.
• Most programming languages have implemented the common

routines of random variate generation in the libraries.

• It is nevertheless worthwhile to understand how random
variate generation occurs.
• In case when build-in functions or libraries are unavailable.
• To better understand the randomness in stochastic simulation.
• Be alert to some inadequate random variate generator.

• To produce a sequence of random variates from a given
distribution:

1 Start with random variates from Uniform[0, 1] (called random
numbers).

2 All random variates with given distribution are “transformed”
from random numbers.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 3 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Definition

• Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].
• If U ∼ Uniform[0, 1], then E[U] = 1

2 , Var(U) = 1
12 , and its

pdf is f(u) =

{
1, 0 ≤ u ≤ 1,

0, otherwise.

• 10 random numbers: 0.2760, 0.6797, 0.6551, 0.1626, 0.1190,
0.4984, 0.9597, 0.3404, 0.5853, 0.2238.

• Statistical Properties
• Uniformity: Each value on [0, 1] has equal likelihood.
• Independence: No correlation between successive numbers.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 4 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Definition

• Uniformity

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

−4 −3 −2 −1 0 1 2 3 4

Figure: Uniformity vs Nonuniformity (from ZHANG Xiaowei)

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 5 / 36

✔ ✗

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Definition

• Independence

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
xi

x i+
1

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
xi

x i+
1

Figure: Independence vs Dependence (from ZHANG Xiaowei)

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 6 / 36

✔ ✗

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Pseudo-Random Numbers

• A computer can NOT generate true randomness! It can only
give us pseudo-random (伪随机) numbers.

• “Pseudo” means false
• Generating random numbers by a known method removes true

randomness.
• The set of pseudo-random numbers can be repeated.

• Goal: To produce a sequence of numbers in [0, 1] that
imitates the ideal properties of random numbers.
• Statistical properties are the most important.
• True randomness is not the first priority.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 7 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Pseudo-Random Numbers

• Properties of a good random number generator (RNG):
1 Pass statistical tests.
2 Solid theoretical support.
3 Fast.
4 Sufficiently long cycle (period).
5 Portable to different computers.
6 Replicable.

• Techniques for RNG:
• Linear Congruential Generator (LCG)
• Combined LCG
• Multiple Recursive Generator (MRG)

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 8 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Linear Congruential Generator

• Linear Congruential Generator (LCG, 线性同余发生器) is a
simple and early development of RNG.

1 Produce a sequence of integers x1, x2, . . . between 0 and
m− 1 by

xi+1 = (axi + c) mod m, i = 0, 1, 2,

• The initial value x0 is called the seed (种子), a is multiplier
(乘子), c is increment (增量), and m is modulus (模数).

2 Transform xi’s to values between 0 and 1 by

ui =
xi
m
, i = 0, 1, 2,

• Possible values of ui: {0, 1
m , . . . ,

m−1
m }. (May not cover all!)

• The selection of the values for a, c, m, and x0 drastically
affects the statistical properties and the cycle length.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 9 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Linear Congruential Generator

• Example: Use LCG with x0 = 27, a = 17, c = 43, and
m = 100.

x0 = 27

x1 = (17× 27 + 43) mod 100 = 502 mod 100 = 2

u1 = 2/100 = 0.02

x2 = (17× 2 + 43) mod 100 = 77 mod 100 = 77

u2 = 77/100 = 0.77

x3 = (17× 77 + 43) mod 100 = 1352 mod 100 = 52

u3 = 52/100 = 0.52

x4 = (17× 52 + 43) mod 100 = 927 mod 100 = 27

u4 = 27/100 = 0.27

The cycle length is only 4!

• Try https://xiaoweiz.shinyapps.io/randNumGen for different parameters.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 10 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Linear Congruential Generator

• An actual use of LCG (Lewis et al. 1969): a = 75, c = 0,
m = 231 − 1 = 2, 147, 483, 647 (a prime number).
• It adopts ui = xi

m+1 .
• It passes many of the standard statistical tests.
• Cycle length ≈ 231 − 2 ≈ 2× 109 (well over 2 billion).

• Note: By letting modulus m be a power of 2 (or close), the
modulo operation can be conducted efficiently, since most
digital computers use a binary representation of numbers.

• As computing power has increased, LCG is not adequate
nowadays; more sophisticated RNGs are used in practice.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 11 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://doi.org/10.1147/sj.82.0136
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I More Sophisticated RNGs

• Combined LCG: Combine J (≥ 2) LCG (with c = 0).

• For 32-bit computers, L’Ecuyer (1988) suggests combining
J = 2 generators with a1 = 40, 014, m1 = 2, 147, 483, 563,
a2 = 40, 692, and m2 = 2, 147, 483, 399.

1 Select seed x1,0 in the range [1,m1 − 1] for the first generator, and
seed x2,0 in the range [1,m2 − 1] for the second. Set j = 0.

2 Calculate x1,j+1 = a1x1,j mod m1,

x2,j+1 = a2x2,j mod m2.

3 Let xj+1 = (x1,j+1 − x2,j+1) mod (m1 − 1).
(Remark: mod uses floored division, i.e., y mod m = y −mb y

m
c.)

4 Return

uj+1 =

{xj+1

m1
, if xj+1 > 0,

m1−1
m1

, if xj+1 = 0.

5 Set j = j + 1 and go to Step 2.

It has cycle length (m1 − 1)(m2 − 1)/2 ≈ 2× 1018.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 12 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://doi.org/10.1145/62959.62969
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I More Sophisticated RNGs

• Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:

xi = (a1xi−1 + a2xi−2 + · · ·+ akxi−K) mod m.

• A specific instance that has been widely implemented is
MRG32k3a† (L’Ecuyer 1999), which is a combined MRG with
J = 2 and K = 3.

• It has cycle length ≈ 3× 1057, which is enormous.
• If you could generate 2 billion (109) pseudo-random numbers

per second, then it would take longer than the age of the
universe to exhaust the period of MRG32k3a!

†
MRG32k3a or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 13 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/opre.47.1.159
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation I Tests for Random Numbers

• Tests based on generated sequences of numbers.
• Frequency Test for uniformity (discussed in next lecture)

– Kolmogorov–Smirnov test (柯尔莫哥洛夫– 斯米尔诺夫检验)
– chi-square test (χ2 test, 卡方检验)

• Autocorrelation Test for independence.

• There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (谱检验).

• Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.

• Be careful when the RNG at hand is not explicitly known or
documented!
• Even RNGs that have been used for years in popular

commercial softwares (e.g., Excel, Visual Basic), have been
found to be inadequate (L’Ecuyer 2001).

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 14 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://doi.org/10.1109/WSC.2001.977250
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation

• Assumption: RNG is available, i.e. we have a sequence of
random numbers (Uniform[0, 1]).

• Goal: Produce random variates from a given probability
distribution (e.g. exponential, Poisson, etc.).

• Widely-used techniques†

• Inverse-transform technique (generic)
• Acceptance-rejection technique (generic)
• Other ad-hoc methods for some specific distributions

†
Methods introduced in this lecture are exact; there are also approximation methods such as MCMC.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 15 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Inverse-Transform Technique

• Let F (x) be the cumulative distribution function (cdf) of X,
i.e., F (x) = P(X ≤ x).

x

F(x)

x2 x4x1

x

F(x)1

0

1

0 x3

Figure: Continuous Random Variable Figure: Discrete Random Variable

• Procedures

1 Generate (as needed) random numbers (on vertical axis).
2 Map inversely to points on horizontal axis, which are the

desired random variates from F (x).

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 16 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Inverse-Transform Technique

• The formal definition of inverse function is
F−1(y) := min{x : F (x) ≥ y}, 0 ≤ y ≤ 1.

• If U ∼ Uniform[0, 1], then F−1(U) has the same distribution
as X, i.e.,

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

X

U

x

F(x)

x2 X x4x1

U

x

F(x)1

0

1

0

Figure: Continuous Random Variable Figure: Discrete Random Variable

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 17 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Inverse-Transform Technique

• The inverse-transform technique is useful when the cdf is so
simple that its inverse function can be analytically solved or
easily computed.

• It can be used to sample from various continuous distributions
• uniform
• exponential
• triangular
• Weibull
• Cauchy
• Pareto

• It can be used to sample from all (in principle) discrete
distributions, e.g.,
• discrete uniform
• geometric
• arbitrary empirical distribution

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 18 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Uniform Distribution

• Goal: Generate random variates from X ∼ Uniform[a, b].

• Intuition: Since X = a+ (b− a)U , we just need to:
1 Generate random number ui;
2 Output xi = a+ (b− a)ui as the required random variates.

• For X ∼ Uniform[a, b], the pdf and cdf are

f(x) =

{
1
b−a , a ≤ x ≤ b,
0, otherwise,

F (x) =

0, x < a,
x−a
b−a , a ≤ x ≤ b,
1, b < x.

• Solve the inverse function of F (x),

F−1(y) = a+ (b− a)y, 0 ≤ y ≤ 1.

• So, F−1(U) = a+ (b− a)U has the same distribution as X.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 19 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Exponential Distribution

• Goal: Generate random variates from X ∼ Exp(λ).

• For X ∼ Exp(λ), the pdf and cdf are

f(x) =

{
λe−λx, x ≥ 0,

0, x < 0,
F (x) =

{
1− e−λx, x ≥ 0,

0, x < 0.

• Solve the inverse function of F (x),

F−1(y) = − 1

λ
ln(1− y), 0 ≤ y ≤ 1.

• So, F−1(U) = − 1
λ ln(1− U) has the same distribution as X.

• Remark: 1− U ∼ Uniform[0, 1] ⇒ − 1
λ ln(U) is sufficient.

• Numerical test for Exp(1) in Excel.
1 Generate 200 random numbers.
2 Obtain 200 random variates via the inverse function.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 20 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Exponential Distribution

0 x

f (x)

1

1

(b)
0 x1

0.1

(a)

R
el

at
iv

e
fr

eq
ue

nc
y

0.2 0.4 0.6 0.8

0.1

x1 2 3 4 5 6

0.2

x

f(x)

(d)

f(x) � e�x

(b)(c)

0.3

0.4

R
el

at
iv

e
fr

eq
ue

nc
y

0

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 21 / 36

Figure:
(a) Empirical histogram of 200
generated uniform random
numbers;
(b) Theoretical density of
Uniform[0, 1];

(c) Empirical histogram of 200
generated exponential variates
(λ = 1);
(d) Theoretical density of
Exp(1).

(from Banks et al. (2010))

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html

Random Variate Generation I Discrete Distribution

• Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.

• The pmf and cdf are

p(x) =

0.5, x = 0,

0.3, x = 1,

0.2, x = 2,

F (x) =

0, x < 0,

0.5, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,

1, 2 ≤ x.

• Solve the inverse function. (Recall F−1(y) := min{x : F (x) ≥ y}.)

x

F(x)

0.5

2 310

1

 0.8

F−1(y) =

0, 0 ≤ y ≤ 0.5,

1, 0.5 < y ≤ 0.8,

2, 0.8 < y ≤ 1.

Try it in Excel.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 22 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Acceptance-Rejection Technique

• Why do we need another method when the inverse-transform
technique is already generic?
• The cdf of a desired distribution may not have an analytical

form.
• The inverse cdf may not exist in closed form and may be

challenging to evaluate, e.g., beta, gamma, normal, etc.
• Although you can solve the inverse transform via numerical

methods anyway, the efficiency may be low.
• E.g., consider a pdf f(x) = 6x(1− x) for 0 ≤ x ≤ 1, then the

cdf is F (x) = 3x2 − 2x3. Computing inverse cdf requires to
solve 3x2 − 2x3 = y for given y.

• Acceptance-rejection technique is also useful for generating a
non-stationary Poisson process (more details later).

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 23 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I A Näıve Example

• Goal: Generate random variates from X ∼ Uniform[1/4, 1]
using acceptance-rejection technique.

1 Generate a random number u (from U ∼ Uniform[0, 1]).
2 If u ≥ 1/4, accept u, output u as the desired random variate;

if u < 1/4, reject u, and return to Step 1.
3 If another Uniform[1/4, 1] random variate is needed, repeat

the procedure from Step 1; stop otherwise.

• Important Observation 1: To produce one random variate
using A-R technique, one may need to generate multiple
random numbers.
• Whereas there exists a one-to-one mapping for the

inverse-transform method.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 24 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I A Näıve Example

• Important Observation 2: The accepted values of U are
conditioned values.
• U itself does not have the desired distribution.
• U conditioned on the event {U ≥ 1/4} does!

• For 1/4 ≤ x ≤ 1,

P{U ≤ x|U ≥ 1/4} =
P{U ≤ x and U ≥ 1/4}

P{U ≥ 1/4}
=
x− 1/4

3/4
,

which is exactly the desired cdf of X ∼ Uniform[1/4, 1].

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 25 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Bounded Support

• Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M .

Acceptance-rejection method

AR for densities with a bounded support

I The target density f (x) has support [a, b] and is upper bounded by M

reject

f (x)
M

I Simulate (Y ,U) ∼ Unif{(y, u) : a ≤ y ≤ b, 0 ≤ u ≤ M}
I Accept the pair if 0 < U < f (Y) and let X be the accepted value of Y

13 / 26

a b

M

0

accept

Figure: Bounded Support (original image from ZHANG Xiaowei)

1 Generate random variate pairs (y1, z1), (y2, z2), . . ., from
Uniform{(y, z) : a ≤ y ≤ b, 0 ≤ z ≤M}.
• yi from Y ∼ Uniform[a, b], zi from Z ∼ Uniform[0,M]

2 Accept the pair if zi < f(yi) and output yi as random variate
from X with density f(x).

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 26 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Bounded Support

• Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(x).

• (Y,Z) ∼ Uniform{(y, z) : a ≤ y ≤ b, 0 ≤ z ≤M}.

Proof.

P{Y ≤ x|Z < f(Y)} =
P{Y ≤ x, Z < f(Y)}

P{Z < f(Y)}

=

∫ x
a

∫ f(y)

0
fY,Z(y, z)dzdy∫ b

a

∫ f(y)

0
fY,Z(y, z)dzdy

Note: fY,Z(y, z) =
1

(b− a)M

=

∫ x
a

∫ f(y)

0
1

(b−a)M
dzdy∫ b

a

∫ f(y)

0
1

(b−a)M
dzdy

=

∫ x
a

∫ f(y)

0
dzdy∫ b

a

∫ f(y)

0
dzdy

=

∫ x
a
f(y)dy∫ b

a
f(y)dy

=
P{X ≤ x}

1
= P{X ≤ x}. �

• The acceptance rate is P{Z < f(Y)} = 1
(b−a)M .

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 27 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Beta from Uniform

• Goal: Generate random variates from Beta(α, β), where the

density is f(x) = xα−1(1−x)β−1

B(α,β) , x ∈ [0, 1].

pd
f

• If α > 1 and β > 1, then f(x) is maximized at x = α−1
α+β−2

and the maximum is M = (α−1)α−1(β−1)β−1

(α+β−2)α+β−2B(α,β)
.

• The acceptance rate is 1
(b−a)M = 1

(1−0)M = 1
M .

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 28 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Unbounded Support

• Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

Acceptance-rejection method

reject

f (x)
Mg(x)

I Following Fundamental Theorem of Simulation, if we can simulate Y ∼ g, then
we can simulate U |Y = y ∼ Unif[0,Mg(y)] and then (Y ,U) is uniform on L

I Then, we only accept the pair if U < f (Y)

17 / 26

accept

Figure: Unbounded Support (original image from ZHANG Xiaowei)

1 Generate random variate pairs (y1, z1), (y2, z2), . . ., from
Uniform{(y, z) : y ∈ support of g(·), 0 ≤ z ≤Mg(y)}.
• yi from Y ∼ g(·), zi from Z ∼ Uniform[0,Mg(yi)] (why?)

2 Accept the pair if zi < f(yi) and output yi as random variate
from X with density f(x).

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 29 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Unbounded Support

• Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(x).
• Let Θ denote {(y, z) : y ∈ support of g(·), 0 ≤ z ≤Mg(y)}.
• (Y,Z) ∼ Uniform Θ.

Proof.

P{Y ≤ x|Z < f(Y)} =
P{Y ≤ x, Z < f(Y)}

P{Z < f(Y)}

=

∫ x
−∞

∫ f(y)

0
fY,Z(y, z)dzdy∫∞

−∞

∫ f(y)

0
fY,Z(y, z)dzdy

Note: fY,Z(y, z) =
1

Θ area

=

∫ x
−∞

∫ f(y)

0
1

Θ area
dzdy∫∞

−∞

∫ f(y)

0
1

Θ area
dzdy

=

∫ x
−∞

∫ f(y)

0
dzdy∫∞

−∞

∫ f(y)

0
dzdy

=

∫ x
−∞ f(y)dy∫∞
−∞ f(y)dy

=
P{X ≤ x}

1
= P{X ≤ x}. �

• The acceptance rate is
P{Z < f(Y)} = 1

Θ area = 1∫∞
−∞Mg(y)dy

= 1
M

∫∞
−∞ g(y)dy

= 1
M .

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 30 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Normal from Cauchy

• Goal: Generate random variates from N (0, 1), where the

density is f(x) = 1√
2π
e−

x2

2 , x ∈ (−∞,∞).

• Use Cauchy(0) density as instrumental density, which is
g(x) = 1

π(1+x2)
, x ∈ (−∞,∞).

Normal

Cauchy

pd
f

• It is easy to see that f(x)
g(x) =

√
π
2 (1 + x2)e−

x2

2 is maximized at

x = ±1 and the maximum is
√

2π
e , which is the required M .

• The acceptance rate is 1
M =

√
e

2π ≈ 0.6577.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 31 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Other Ad-Hoc Methods

• Univariate normal: A normal RV with mean µ and s.d. σ
has pdf

φ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ (−∞,∞).

• If µ = 0 and σ = 1, then it is a standard normal RV.

• If Z ∼ N (0, 1), then µ+ σZ ∼ N (µ, σ2).

• Generate N (0, 1) random variate

Method 1 Acceptance-rejection technique (from Cauchy).
Method 2 Box–Muller method.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 32 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Other Ad-Hoc Methods

• Box–Muller method
1 Generate u1 and u2 independently from Uniform[0, 1].

2 Let z1 =
√
−2 lnu1 cos(2πu2) and z2 =

√
−2 lnu1 sin(2πu2).

• z1 and z2 are random variates from N (0, 1) (independent).

• Intuition:
• For two independent N (0, 1) RVs
Z1 and Z2,

Z2
1 + Z2

2 ∼ χ2
2.

• X ∼ Exp(1/2) ⇔ X ∼ χ2
2.

• −2 lnu1 is a random variate from
Exp(1/2) (and thus χ2

2).
• The angle is distributed uniformly

around the circle.

e-½

-2 -1 0 1 2
u1 (o), z1 (+)

2

1

0

-1

-2

u2
 (o

),
z2

 (+
)

Figure: Box–Muller Method Visualisation
(image by Cmglee / CC BY 3.0)

Interactive Graph: Wikimedia Backup

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 33 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://en.wikipedia.org/wiki/File:Box-Muller_transform_visualisation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by/3.0/deed.en
https://upload.wikimedia.org/wikipedia/commons/1/1f/Box-Muller_transform_visualisation.svg
https://shenhaihui.github.io/teaching/mg26018/files/Box-Muller.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Other Ad-Hoc Methods

• Multivariate normal: Univariate normal Zi ∼ N (µi, σ
2
i),

i = 1, . . . , d, with Σij := Cov(Zi, Zj), form a random vector
Z = (Z1, . . . , Zd)

ᵀ ∼ N (µ,Σ), and it has joint pdf

φ(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)

ᵀ
Σ−1(x− µ)

}
,

x ∈ Rd, where |Σ| is the determinant of Σ.

• Σ = (Σij) is a symmetric and positive semidefinite matrix.

• If µi = 0 and σi = 1 for all i, and Σij = 0 for i 6= j (pairwise
independence), then Z ∼ N (0, I).

• If Z ∼ N (0, I), and Σ = AA
ᵀ

(Cholesky decomposition),
then µ+AZ ∼ N (µ,Σ).

• There are many other relationships among various probability
distributions.
• See, for example, Leemis & McQueston (2008) and the

interactive graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 34 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://doi.org/10.1198/000313008X270448
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Generating Poisson Process

• Poisson process with rate λ: Interarrival time distribution is
exponential with rate λ (or mean 1/λ), and

N(t+ h)−N(t) ∼ Poisson(λh). (same as N(h))

• To generate Poisson process with rate λ, one only need to
generate iid Exp(λ) random variates.
• si, the arrival time of the ith arrival, satisfies

si = si−1 − (1/λ) ln(ui), i = 1, 2,

• Nonhomogeneous Poisson process with rate (intensity)
function λ(t):

N(t+ h)−N(t) ∼ Poisson(m(t+ h)−m(t)),

where m(t) =
∫ t

0 λ(s)ds.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 35 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation I Generating Poisson Process

• To generate nonhomogeneous Poisson process with rate
function λ(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

• Idea behind thinning:
• Generate a stationary Poisson arrival process at the fastest rate
λ∗ = maxt λ(t).

• But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

• Algorithm:
1 Set t = 0 and i = 1.

2 Generate x from Exp(λ∗), and let t← t+ x (this is the arrival
time of the stationary Poisson process with rate λ∗).

3 Generate random number u (from Uniform[0, 1]).
If u ≤ λ(t)/λ∗, then si = t and i← i+ 1.

4 Go to Step 2.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 3 Fall 2019 36 / 36

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

	Cover
	Contents
	Introduction
	Random Number Generation
	Definition
	Pseudo-Random Numbers
	Linear Congruential Generator
	More Sophisticated RNGs
	Tests for Random Numbers

	Random Variate Generation
	Inverse-Transform Technique
	Acceptance-Rejection Technique
	Other Ad-Hoc Methods
	Generating Poisson Process

